55-20
N92-10049005/
P-20
RCH
JSTERS
LUU053/
Werwin

Appendix H

LOS ALAMOS NEP RESEARCH IN ADVANCED PLASMA THRUSTERS

Kurt Schoenberg and Richard Gerwin

Presented to the NASA MPD Thruster Technology Workshop May 16, 1991

PLASMA THRUSTER RESEARCH

Los Alamos has initiated research in advanced plasma thrusters that capitalizes on Laboratory capabilities in plasma science and technology

THE PROGRAM GOAL:

• Elucidate the scaling issues of MPD thruster performance in support of NASA's MPD thruster development program

THE PROGRAM OBJECTIVE:

· Address multi-megawatt, large scale, quasisteady-state MPD thruster performance

ADVANCED PLASMA THRUSTERS

Active Research Activities

- A CTX coaxial plasma gun, with tungsten-coated electrodes, is being operated as a function of current, gas pressure, gas type, applied axial magnetic field, and electrode polarity.
- The steady-state properties of nozzle-based coaxial plasma guns are being modeled by an evolving magnetic Bernoulli equation that provides analytic predictions for thruster power, mass flow rate, thrust, and specific impulse.

• Research Results:

- * A new quasi-steady-state operating regime has been obtained at SEI-relevant power levels (5 to 10 MW), that enables direct coaxial gun MPD comparisons of thruster physics and performance.
- * Radiative losses are negligible
- * Operation with an applied axial magnetic field shows the same operational stability and exhaust plume uniformity benefits seen in MPD thrusters.
- * Observed gun impedance is in close agreement with the magnetic Bernoulli model predictions.
- * Spatial and temporal measurements of magnetic field, electric field, plasma density, electron temperature, and ion/neutral energy distribution are underway.
- * Model applications to advanced mission logistics are underway.

ELECTROMAGNETIC THRUSTERS: J, B, DRIVES pvz

MPD THRUSTERS

COAXIAL GUNS

COAXIAL GUN DISCHARGE # CTX19645

Diagram

Visible Emission

Intensity Contours (0-255)

COAXIAL GUN DISCHARGE # CTX19659

ORIGINAL PAGE IS OF POOR QUALITY

DEFLAGRATION + NOZZLE = THRUST

BUILT-IN NOZZLE

MAGNETICALLY-FORMED NOZZLE

PLASMA THRUSTER RESEARCH Spatial Field Measurements

3-D Spatial | B | plot

ADVANCED PLASMA THRUSTERS The Importance of Scale

- We hypothesize that scale is important to optimize MMW mission applications
- We hypothesize that scale may directly affect the MMW thruster performance characteristics
 - lower current density
 - smaller gradient scale lengths
 - transition from resistive to more "ideal like" MHD operation
 - lower plasma turbulence higher efficiency

ADVANCED PLASMA THRUSTERS The Importance of Scale

Thrust power as a function of I and r

ADVANCED PLASMA THRUSTERS

Envisioned Experimental Program

NEAR-TERM

- Characterize QSS power balance at large scale, MMW
 - Electrode Losses
 - Radiation
 - Axial, radial transport
- Compare global loss estimates with locally determined power balance

FARTHER-TERM

- Achieve QSS and mass-flow steady state
- Benchmark power balance
- Address performance optimization
 - electrode configuration
 - nozzle configuration (magnetic)
 - spatial scale

- Possible Reasons for Scaling with R-

- · Mission Scaling
- · Transport Scaling
- , Macroscopic Stability
- · Microscopic Stability
- · Optimization of Thruster Efficience

- Transport Scaling -

May be related to the mechanism of plasma production and "ingestion".

Scaling Issues for MPD Thrusters

- Plasma Production and Heating -Model: "Sand dropped on Conveyor Belt" Assume Te = T.

Approach: Boltzmann Equation with Source

Get: $\left(\frac{1}{4t} = \frac{\partial}{\partial t} + \vec{v} \cdot \vec{r}\right)$ $\frac{2}{2^{2}-1}\frac{dT}{dt} + 2TP.V =$

= Ohmic Heating + Viscous Heating

- Thermal Conduction Loss

+
$$m \langle \sigma v \rangle^2 \left[\frac{1}{2} m \cdot \sqrt{2} - \frac{2}{8-1} T - e_i \right]$$

+ $n_{*}\langle \sigma v \rangle_{*} \left[\frac{1}{2} m_{*} V^{2} - \frac{2}{3-1} T - (e_{*} - e_{*}) \right]$

IONI EUTHON of excited states:

$$-\frac{n_{o}\langle\sigma v\rangle_{o}^{*}}{n_{*}\langle\sigma v\rangle_{*}^{*}}e_{*}$$

where $\frac{1}{2}$ m. V means $\frac{1}{2}$ m. $(V-V_m)^2$.

$$\frac{t_7}{t_2} \sim \mathcal{R}_{mag} \sim \left(\frac{z}{2}\right) \sim TR$$

$$\sim \left(\frac{I}{RP^{1/2}}\right) R$$

PREDICTIONS FROM "CONVEYOR BELT" MODEL OF ION HEATING (HYDROGEN)

(1 m v 2 >> De (atomic))

$$T_i(eV) = 5.0 \times 10^{10} \left(\frac{I^2}{nr^2}\right)_{MKS}$$

$$\frac{\omega_{ci}}{\nu_{ii}} = 4.6 \times 10^{29} \left(\frac{I^4}{n^{5/2} r^4} \right)_{MKS}$$

$$\frac{\omega_{ce}}{\nu_e} = 30 \frac{\omega_{ci}}{\nu_i}$$
 assuming $T_e = T_i$

$$q_i\left(MW/m^2\right) = 6.3 \times 10^{33} \left(\frac{I^7}{n^{7/2}r^8}\right)_{MKS} \frac{1}{\left[1 + 2\left(\frac{\omega_{ci}}{\nu_{ii}}\right)^2\right]} \left(\frac{r}{\Delta}\right)$$

$$R_{v} = 0.58 \times 400 \times 10^{-40} \left(\frac{n^{3}r^{5}}{I^{4}}\right)_{MKS} \left(\frac{\Delta}{r}\right) \left[1 + 3\left(\frac{\omega_{ci}}{\nu_{ii}}\right)^{2}\right]$$

$$QI = 2.3 \cdot 10^{-1}$$

$$QI = 1.406$$

- Macroscopic Stability -

The viscous Reynolds number (with magnetized ions)
may become large
and may thereby induce
turbulent channel flow.

Viscous Reynolds number:
$$\frac{V\Delta}{D_v} = R_v$$

Ion Shear Viscosity: $\frac{1}{7} \frac{v_{thi}^2}{v_t} \frac{v_{thi}^2}{w_{ci}^2} = D_v$
 $v_t = const. \times m T$

Hence
$$\Re_{v} = const.*\Delta*\left(v \frac{B^2}{m} + \frac{1}{1}\right)$$

If
$$T_i$$
 "does scale" (like V^2)
then $\mathcal{R}_v = const. \times \Delta \times V^4 \sim \left(\frac{T^2}{\dot{M}}\right)^4$

Scaling Issues for MPD Thrusters

RV1